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Abstract

The aim of this paper is to give a result concerning the instability properties of
the solutions of forced magnetohydrodynamics equations at small but finite Reynolds
numbers. These solutions are highly oscillating spatially on the scale of the under-
lying flow but are growing on a larger scale depending on the magnetic Reynolds
number. The existence of such solutions is called α-effect in the physical litterature.
We prove instability results for a dense subset of initial velocity field of the flow at
given Reynolds number.
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1 Introduction
Dynamo theory first interested physicists almost one century ago, when Sir Joseph Larmor
[14] wondered how a magnetic field could be generated by a rotating body like the Sun
or the Earth. Since then, many results have come, both in mathematics and physics, to
understand this kind of phenomena.

The physical model is a coupled system derived from the interaction of a conductive
fluid, which follows Navier-Stokes equations, and an electromagnetic field, which follows
Maxwell equations and Ohm’s law. The interaction of the two physic quantities comes from
the fact that a magnetic field has an effect on a moving conductive fluid, which creates in
return a magnetic field. This kind of system is known as magnetohydrodynamics (MHD).

We have mainly two behaviors for the solutions of the MHD system: the magnetic
energy can either collapse (exponentially), or stay/grow. In the latter case we say we
have a dynamo, and it is the effect we observe in bodies like the Sun. However, the
understanding of dynamo mechanisms is not simple. Indeed, the most “intuitive” way we
imagine the conductive fluid in rotation and the magnetic field (that is a 2D rotating fluid
in the kernel, and a magnetic field that looks like the one of a static magnet) is actually a
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well known anti-dynamo situation. Anti-dynamo theorems have been widely studied, and
some summary of the knowledge in the domain has been made in [11].

The kind of situation we want to study there is that of the second kind, that is dynamo
situation (and more precisely growth). Positive results began to emerge only later in the
50’s, even though it was already well known that it is what occured in the Sun. In the 90’s
M.M. Vishik [23] proved that fast dynamos (i.e. exponential growth) require Lagrangian
chaos in the fluid. Those results spread the idea that the velocity field has to be chaotic
enough to expect a dynamo effect. Because of this “negative” result, different methods
were tried to find instability results, linked to singularities: Y.B. Ponomarenko [17] studied
concentration phenomena to get dynamo result in the case where Laplace force is neglected
(i.e. imposed velocity field) and his results were extended by Gilbert [10] and successfully
experimentaly checked [6]. More realistic case of the Ponomarenko dynamo was studied
by D. Gérard-Varet and F. Rousset [9]. All those results give only asymptotic results.

In this paper we will focus on another singular dynamo mechanism, called alpha effect,
first introduced by E.N. Parker [16], which is based on scale separation: we formally
decompose the magnetic and the velocity fields into two parts: a fluctuating part, evolving
on a turbulent scale, and a mean part, evolving on a larger scale. The mean value is broadly
the spatial average over a sphere of radius much larger than the typical distance on which
the field is turbulent, but much smaller thant the distance on which we want to observe
the dynamo effect (in what follows, these distances will be 1 and 1{ε, so scale separation
will take place at small ε, which will be implicitely defined in term of Rm). This gives a
decomposition of the velocity and magnetic fields under the form

u “ ũpx, x{ε, tq ` ūpx, tq,

b “ b̃px, x{ε, tq ` b̄px, tq,
(1)

where ũ and b̃ have null mean value on the second variable. The idea behind alpha effect is
that the averaged induction term ∇ ^ pũ ^ b̃q (we will specify those notations right below)
that will appear in the MHD equations will give us a destabilizing effect on the magnetic
field.

The alpha effect was first formally studied by G.O. Roberts [19, 18], in the framework
of periodic flows. His results were discussed by H.K. Moffatt [15], S. Childress [2] and A.M.
Soward [20] that considered a larger class of velocity fields and range of parameters. This
effect has been since experimentaly confirmed by R. Stieglitz and U. Müller [21].

The aim of the present paper is to provide a rigorous justification of this mechanism,
in a nonlinear framework. We will improve substantially former results of D. Gérard-Varet
[7, 8].

Before stating more precisely our results, we will first recall the system we will work
with:

The generation of magnetic field B by an electrically conducting fluid of velocity U and
magnetic diffusivity νm follows the equations

"

BtB ´ ∇ ^ pU ^ Bq ´ νm∆B “ 0,
∇ ¨ B “ 0.

(2)
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These equations are derived from the Maxwell’s equation and Ohm’s law (see second section
of [3], or [11] for more detailed derivation). Since other relevant physics quantities that
appear in the Maxwell’s equations can be obtained from B, it is enough to work with only
that.

Furthermore, the incompressible Navier-Stokes equations that drive the evolution of
the conducting fluid under the force created by the magnetic field are

"

ρBtU ` ρU ¨ ∇U “ ´∇p ` η∆U ` 1
µ0

p∇ ^ Bq ^ B ` f,

∇ ¨ U “ 0,
(3)

where p is the pressure field, f is an additional forcing term, ρ is the fluid mass density and
η is the fluid shear viscosity (see [3] again, keeping in mind the incompressible condition).
The additional forcing term will be chosen to generate some steady velocity field (and thus
will be independent of time), see below.

We study there oscillating field U of amplitude V , oscillating on a space-scale L, and
with magnetic diffusivity νm. After proper nondimensionalization of time, space, pressure
and magnetic field, we then have the full incompressible MHD system:

$

’

’

&

’

’

%

BtB ´ ∇ ^ pU ^ Bq ´ 1
Rm

∆B “ 0,

BtU ` U ¨ ∇U ` ∇p ´ 1
Re
∆U “ p∇ ^ Bq ^ B ` f,

∇ ¨ B “ 0,
∇ ¨ U “ 0,

(4)

where Rm “ LV
νm

is the magnetic Reynolds number, and Re “
ρLV
η

is the hydrodynamic
Reynolds number.

Here we want to find a growing solution on a larger scale L{ε (where ε ą 0), using the

alpha effect introduced earlier. We will search this solution as a perturbation
ˆ

u
b

˙

of a

solution
ˆ

Us

0

˙

of this system (and the forcing term f is chosen accordingly so that Us is a

solution of the Navier-Stokes equation):
"

U “ u ` Us,
B “ b ` 0.

(5)

and the system in terms of b, u and Us becomes
$

’

’

&

’

’

%

Btu ` u ¨ ∇Us ` Us ¨ ∇u ´ 1
Re
∆u ` ∇p “ p∇ ^ bq ^ b ´ u ¨ ∇u,

Btb ´ ∇ ^ pUs ^ bq ´ ∇ ^ pu ^ bq ´ 1
Rm

∆b “ 0,

∇ ¨ b “ 0,
∇ ¨ u “ 0.

(6)

The space variables for this system is denoted θ, and corresponds to the fluctuation
scale L, 1 after non-dimensionalization. In particular, we assume that

Us “ Uspθq P C8pT3q (7)
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and has zero-mean.
Later on, we shall introduce a larger scale variable x “ εθ corresponding to the large

scale L{ε of the growing field.
Our main result is an instability theorem in the Liapunov sense for system (6). To

state our result, we introduce the set H8
0 pT3q of spatially 1-periodic functions of class C8

and null mean value with its usual distance:

dpU,U 1q “

8
ÿ

k“0

max p1, }U ´ U 1}Hkq

2k
, (8)

which makes it a Fréchet-space.
For T “ pT1, T2, T3q P pR˚

`q3, we denote

Hs
T “ HspR{T1Z ˆ R{T2Z ˆ R{T3Zq (9)

the inhomogeneous Sobolev space of order s on the torus

R{T1Z ˆ R{T2Z ˆ R{T3Z. (10)

We have the following theorem:

Theorem 1 Let s ą 5{2 be a real number. There exists a dense subset P of the unit
ball of H8

0 pT3q and R0
m ą 0 such that for all Us P P and Rm ă R0

m, for all Re ą 0, the

solution
ˆ

Us

0

˙

of the forced MHD system is nonlinearly unstable in the following sense:

For some T “ pT1, T2, T3q P pN˚q3 depending on Us and Rm, and initial values
ˆ

u0

b0

˙

P Hs
T , (11)

and C0 ą 0 such that for all δ ą 0, any solution
ˆ

uδ

bδ

˙

of (6) with initial value δ

ˆ

u0

b0

˙

satisfies
›

›

›

›

ˆ

uδ

bδ

˙

ptδq

›

›

›

›

Hs
T

ě C0 (12)

for some time tδ. Furthermore, we have the estimate on tδ as δ Ñ 0:

tδ „δÑ0 ´
ln δ

C
, (13)

where C is a positive constant.

T will be defined in (79)
As expected, this theorem expresses the instability of the forced MHD system, up to

consider a larger periodic box r0, T1s ˆ r0, T2s ˆ r0, T3s. Let us point out that pT1, T2, T3q P

pN˚q3, so that Us is also periodic on this larger scale. Note also that Us is not necessarily a
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solution of the Navier-Stokes equation and that the forcing term f is chosen to compensate
this.

In particular, for any
ˆ

u0

b0

˙

P Hs
T , (14)

and any δ ą 0, system (6) has a unique solution
ˆ

uδ

bδ

˙

P C0pr0, T ˚s, Hs
T q (15)

for some T ˚ ą 0 with initial data δ
`

u0, b0
˘

. Moreover, for δ ą 0 small enough, it is
well-known that one can take T ˚ “ `8.

To the best of our knowledge, our theorem is the first full justification of the α-effect,
in the nonlinear context.

In particular, it extends substantially the article [7] by David Gérard-Varet. Recast in
our variables, this article considers the case of large magnetic diffusion, that is Rm “ ε ! 1.
Briefly, it is shown that for all m P N, there are solutions of (6) (on a larger box depending
on ε) that go from amplitude εm initially to an amplitude η “ ηpmq ą 0 independent of ε
(but depending on m).

Note that, as η depends on m, this result does not yield Liapunov instability at fixed
small ε. Moreover, the study in [7] corresponds to vanishing magnetic Reynolds number.
In our theorem, the threshold R0

m is of order 1, which is much more satisfactory from a
physical point of view.

The outline of the paper is as follow:
The first and main part of the paper is the construction of an exact unstable eigenmode

for the linearization of (6). It involves sharp spectral analysis arguments. Then, on the
basis of this linear analysis, the proof of nonlinear instability is given in section 3.

2 Linear instability
In this section we will establish linear instability for the induction part of the MHD system.
In other words, we will exhibit an unstable eigenmode of the linear operator

b ÞÑ ∇ ^ pU ^ bq ´
1

Rm

∆b (16)

for a large class of U . This will be possible, through an accurate mathematical analysis of
the alpha effect described in the introduction.

Let us write down the induction equation:

Btb ´ ∇ ^ pU ^ bq ´
1

Rm

∆b “ 0,

∇ ¨ b “ 0,
(17)
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where U P H8
0 pT3q is independent of time.

In this section we prove the following linear instability result:

Theorem 2 Let s ě 0 be a real number. There exists a dense subset P of the unit ball of
H8

0 pT3q and a positive real R0
m such that for all positive Rm ă R0

m, and all U P P, there
exists ξ P p2πQ˚q3 and a number ε0 ą 0 such that for all 0 ă ε ă ε0, there exists a solution
B of (17) of the form

bpt, θq “ eiεξ¨θeλ
εtbεpθq (18)

where bε P HspT3q, with exponential growth when t Ñ `8 (that is Repλεq ą 0).

2.1 Linearized equation
Let U P H8

0 pT3q be a spatially periodic velocity field in R3 (of period 1).
We expect to record a growth of the magnetic field at large spatial scales x “ εθ (where

ϵ will be defined in terms of Rm), and accordingly posit for the solution of (17) the ansatz

bpθ, tq “ eiεξ¨θ`εtλε

Bε
0pθq, (19)

for some ξ P R3 and some λε with Reλε ą 0, where Bε
0 is 1-periodic in θ and has a power

series expansion of the form:

Bε
0pθq “

ÿ

mě0

εmpB̄m ` B̃mpθqq,

ż

T3

B̃mpθq dθ “ 0. (20)

We plug this ansatz in (17):
"

λεBε
0 ´ iξ ^ pU ^ Bε

0q ´ 1
ε
∇θ ^ pU ^ Bε

0q ` ε
Rm

ξ2Bε
0 ´ 1

εRm
∆θB

ε
0 ´ 2

Rm
i

řd
i“1 ξiBθiB

ε
0 “ 0,

iξ ¨ Bε
0 ` 1

ε
∇θ ¨ Bε

0 “ 0,
(21)

and we solve according to powers of ε : we denote by Aε “ A0 ` εA1 ` ε2A2 the operator
associated to the first equation of (21), that is:

A0 “ ∇θ ^ pU ^ ¨q `
1

Rm

∆θ

A1 “ iξ ^ pU ^ ¨q `
2

Rm

i
d

ÿ

i“1

ξiBθi

A2 “ ´
1

Rm

ξ2 Id,

(22)

where Aε : Hs`2pT3q Ñ HspT3q, such that the first equation in (21) is

AεBε
0 “ ελεBε

0, (23)

which is an eigenvalue problem. We will split this equation in powers of ε to obtain 3
equations.
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2.2 Study of the first term in the development
The first equation, corresponding to ε “ 0, is

A0B0
0 “ 0, (24)

that is 1
Rm

∆θB
0
0 ` ∇θ ^ pU ^ B0

0q “ 0, which depends only on the independent variable θ.
We split B0

0 between mean part and fluctuating part :

1

Rm

∆θB̃
0
0 ` ∇θ ^ pU ^ B̃0

0q “ ´∇θ ^ pU ^ B̄0
0q. (25)

Since the Laplacian
∆θ : Hs`2

0 pT3q Ă Hs
0pT3q Ñ Hs

0pT3q (26)
is an unbounded invertible operator, one can introduce

∆´1
θ ∇θ ^ pU ^ ¨q : Hs

0pT3q Ñ Hs`1
0 pT3q Ă Hs

0pT3q (27)

which is a compact operator of domain Hs
0pT3q.

We introduce the following operator, which is the restriction of A0 to zero-mean func-
tions:

LRm “
1

Rm

∆θ ¨ `∇θ ^ pU ^ ¨q “ ∆θp
1

Rm

Id`∆´1
θ ∇θ ^ pU ^ ¨qq. (28)

By classical result on the spectrum of compact operators, LRm is invertible as an operator
from Hs`2

0 pT3q to Hs
0pT3q but for some countable set CL of Rm which can be written as a

sequence of numbers growing to `8. In particular it is invertible for Rm smaller than a
given value R0

m.
Since ´∇θ ^ pU ^ B̄0

0q P Hs
0pT3q for any B̄0

0 P R3, the equation (25) admits exactly one
solution for every B̄0

0 P R3. Then for any Rm out of CL, the equation

LRmB̃
0
0 “ ´∇θ ^ pU ^ B̄0

0q (29)

is equivalent to
B̃0

0 “ L pθqB̄0
0 . (30)

where L pθq is the operator from R3 to Hs`2
0 pT3q defined by

L pθq “ ´L´1
Rm

∇θ ^ pU ^ ¨q (31)

That means that the operator A0 has a kernel of dimension 3, A0 : Hs`2pT3q Ă HspT3q Ñ

HspT3q, that is kerA0 “ tB̄ ` L pθqB̄, B̄ P R3u.
Using Lax-Milgram theorem and elliptic regularity, we know that the operator

1

Rm

∆ ` ∇θ ^ pU ^ ¨q ´ λ Id “ A0 ´ λ Id (32)

is invertible for large enough λ if seen as an operator from Hs`2
0 to Hs

0. Thus the resolvant
of A0 is compact in at least one λ, and all spectral projections are of finite dimension, that
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is A0 has eigenvalues of finite dimension, isolated and they are the only spectral values of
A0 (see [13] p.187).

Let σ be a smooth path surrounding 0 and no other eigenvalue of A0. For ε sufficiently
small, since Aε varies continuously on ε, σ doesn’t cross the spectrum of Aε, and the
operator

P ε :“
1

2iπ

ż

σ

pAε ´ λ Idq´1 dλ. (33)

is the spectral projector associated to the eigenvalues of Aε which tend to 0 as ε tends to 0.
The eigenvalue 0 has multiplicity 3 in the spectrum of A0. By continuity, this eigenvalue
will vary – and maybe split – around 0 for positive ε, without crossing σ if ε is small
enough. Note that the path depends on the choice of ξ.

Morover, still for ε small enough, P ε also varies analytically on ε.
Furthermore, by definition, P 0 is the spectral projection of A0 on its eigenvalue 0, and

commutes with A0 ([13] again, thm 6.17 p 178).
On ImP 0, A0 has then only 0 as an eigenvalue. Since ImP 0 is of finite dimension, A0

is nilpotent on this same space. Until the end of the subsection, we define A0 “ A0
| ImP 0 .

Let n be the integer such that

kerA0 Ă kerpA0q2 Ă ¨ ¨ ¨ Ă kerpA0qn “ ImP 0, (34)

We will now prove that n “ 1, that is kerA0 “ kerpA0q2:
Let B P kerpA0q2. Using the tilded and bar notation introduced in 2.1 to decompose a
vector field in large-and-small-scale fields, we have the equivalences:

pA0q2B “ 0 ðñ A0pĆA0Bq ` A0p A0B
loomoon

“0

q “ 0,

ðñ ĆA0B “ B̄1 ` L pθqB̄1 and A0B “ 0,

ðñ ĆA0B “ 0 and A0B “ 0,

ðñ A0B “ 0.

(35)

Thus kerA0 “ kerpA0q2 “ ImP 0.

2.3 Simplification of the equation
Back to (23), we look for solutions of that equation in ImP ε, that is in the sum of the
eigenspaces corresponding to the spectral values of Aε surrounded by σ:

P εAεP εBε “ ελεBε. (36)

Developping P ε as the beginning of a series in ε, P ε “ P 0 ` εP 1 ` ε2P 1ε, we have

P εAεP ε “ P 0A0P 0 ` εP 1A0P 0 ` εP 0A0P 1 ` εP 0A1P 0 ` ε2A1ε, (37)

where both P 1ε and A1ε depend analytically on ε.
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Since P 0 and A0 commute and A0P 0 “ 0 (see results of previous subsection), the first
three terms vanish, thus leaving us with the equation:

P 0A1P 0Bε ` εA1εBε “ λεBε. (38)

In the next subsections, we look for a solution of this equation for ε “ 0. We shall then
conclude using the continuity of eigenvalues as functions of ε.

2.4 Case ε “ 0

The first order in ε of the equation (38) is equivalent to the system
"

A1B “ λB

B̃ “ L pθqB̄
(39)

where A1 “ iξ ^ pU ^ ¨q ´ 2i
Rm

řd
i“1 ξiBθi and L was introduced in (31). The mean part of

the first equation is
iξ ^ pU ^ Bq “ λB̄, (40)

that is
iξ ^ pU ^ L pθqB̄q ` iξ ^ pU ^ B̄q

loooooomoooooon

“0

“ λB̄, (41)

iξ ^ pαB̄q “ λB̄, (42)

where α is a constant matrix (that depends on U and Rm),

αb “

ż

θPT3

Upθq ^ L pθqb, (43)

which we will study in the next subsection.
Thus we now have to find the eigenvalues of the operator iξ ^ pα¨q, that is to find the

eigenvalues of the matrix Aξα, where

Aξ “

¨

˝

0 ´iξ3 iξ2
iξ3 0 ´iξ1

´iξ2 iξ1 0

˛

‚. (44)

2.5 Study of the matrix α

The α matrix is defined for any b P R3 by

αb “

ż

θPT3

Upθq ^ L pθqb “ ´

ż

θPT3

Upθq ^
`

L´1
Rm

∇θ ^ pUpθq ^ bq
˘

. (45)

We shall write this matrix as the sum of its skew symmetric part αA and symmetric
part αS (which are both real).
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Now we compute the eigenvalues of those matrices: since αA is antisymmetric, his
eigenvalues are 0,˘i}VU} where VU is a vector of R3 such that @b P R3, αAb “ VU ^ b.

For αS, we will apply a slight variation to U so that the matrix changes to one of
distinct non-zero eigenvalues (this doesn’t change what we said about the antisymmetric
part).

2.5.1 Symmetry of α

We have in the expression of α:

´L´1
Rm

∇θ ^pU ^bq “

ˆ

1

Rm

Id´A

˙´1
`

´∆´1
θ ∇θ ^pU ^bq

˘

“

ˆ

1

Rm

Id´A

˙´1

A b, (46)

where
A “ ´∆´1

θ ∇θ ^ pU ^ ¨q : Hs`2
0 Ñ Hs`3

0 Ă Hs`2
0 . (47)

For small enough Rm (such that 1{Rm is bigger than the highest eigenvalue of the compact
operator A , say Rm ă 2R0

m where R0
m ą 0 – we will justify this factor 2 as a precaution

at the end of the subsection), we can express the resolvent as a series:

´ L´1
Rm

∇θ ^ pU ^ bq “

`8
ÿ

n“0

Rn`1
m A n`1b “

`8
ÿ

n“1

Rn
mA nb. (48)

Furthermore, (47) gives in Fourier series, for k ‰ 0 and f P HspT3q:

yA fpkq “ ´
1

2π
|k|´2p´ikq ^

˜

ÿ

k1

Ûpk1q ^ f̂pk ´ k1q

¸

. (49)

Note that, by definition of ∆´1
θ , xAfp0q “ 0.

Thus

αb “

ż

θPT3

Upθq ^

`8
ÿ

n“1

pRmA qnb “

`8
ÿ

n“1

Rn
m

ż

θPT3

Upθq ^ A nb, (50)

and we recognize in the last part of the equation:
ż

θPT3

Upθq ^ A nb “ {U ^ A nbp0q. (51)

Recursively, we can compute {U ^ A nbp0q and

αb “

8
ÿ

n“1

Rn
m

ÿ

řn`1
j“1 kj“0

Ûpkn`1q^

ˆ

imn

2π|mn|2
^

ˆ

Ûpknq ^ ¨ ¨ ¨

ˆ

im1

2π|m1|
2

^

´

Ûpk1q ^ b
¯

˙

¨ ¨ ¨

˙˙

,

(52)
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where the second sum is actually restricted to tuples where all partial sums mi “
ři

j“1 kj

are non-zero (otherwise there is a term of the form yA kbp0q which is zero by definition of
A ).

This last equality is:

αb “

8
ÿ

n“1

Rn
mα

pn`1qb, (53)

where

αpnq “
ÿ

řn
j“1 kj“0

Ûpknq ^

ˆ

imn´1

2π|mn´1|2
^

ˆ

Ûpkn´1q ^ ¨ ¨ ¨

ˆ

im1

2π|m1|
2

^

´

Ûpk1q ^ b
¯

˙

¨ ¨ ¨

˙˙

,

(54)
and αpnq have the same symmetry as n (by recurrence, or see [1]).

2.5.2 Eigenvalues of α

The first symmetric matrix in power series is αp2q :
Let U P H8

0 pT3q, and η ą 0. We want Ũ such that αp2qpŨq is of distinct non-zero eigenvalues
and dpU, Ũq ă η, where d is the usual distance induced by semi-norms on H 8

0 pT3q: we
define now

U jpθq “
ÿ

|k|ďj

Ûpkqe2ik¨θπ. (55)

For large enough j, we have dpU j, Uq ď η{2. Denote then Ũ “ U j `
ř3

i“1 δiV
i where δi ą 0

is determined later, and

V 1 “

¨

˝

sinp2πpj ` 1qθ3q ` cosp2πpj ` 1qθ2q

cosp2πpj ` 1qθ3q

sinp2πpj ` 1qθ2q

˛

‚, V 2 “

¨

˝

sinp2πpj ` 2qθ3q

sinp2πpj ` 2qθ1q ` cosp2πpj ` 2qθ3q

cosp2πpj ` 2qθ1q

˛

‚,

V 3 “

¨

˝

cosp2πpj ` 3qθ2q

sinp2πpj ` 3qθ1q
sinp2πpj ` 3qθ2q ` cosp2πpj ` 3qθ1q

˛

‚.

(56)

Then:

V̂ 1pkqy “

ż

e´2ik¨θπV 1
y pθq dθ “

"

0 if k1 ‰ 0 or k2 ‰ 0
ş1

0
e´2iπk3θ3 cosp2πpj ` 1qθ3q dθ3 otherwise

“

"

0 if pk3 ‰ j ` 1 and k3 ‰ ´j ´ 1q or k1 ‰ 0 or k2 ‰ 0
1
2

otherwise

. (57)

Thus

V̂ 1pkq “

¨

˝

1
2
δk1“0δk3“0pδk2“j`1 ` δk2“´j´1q ` i

2
δk1“0δk2“0pδk3“´j´1 ´ δk3“j`1q

1
2
δk1“0δk2“0pδk3“j`1 ` δk3“´j´1q

i
2
δk1“0δk3“0pδk2“´j´1 ´ δk2“j`1q

˛

‚, (58)
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and similarily for the other ones:

V̂ 2pkq “

¨

˝

i
2
δk1“0δk2“0pδk3“´j´2 ´ δk3“j`2q

1
2
δk1“0δk2“0pδk3“j`2 ` δk3“´j´2q ` i

2
δk2“0δk3“0pδk1“´j´2 ´ δk1“j`2q

1
2
δk2“0δk3“0pδk1“j`2 ` δk1“´j´2q

˛

‚, (59)

V̂ 3pkq “

¨

˝

1
2
δk1“0δk3“0pδk2“j`3 ` δk2“´j´3q

i
2
δk2“0δk3“0pδk1“´j´3 ´ δk1“j`3q

1
2
δk2“0δk3“0pδk1“j`3 ` δk1“´j´3q ` i

2
δk1“0δk3“0pδk2“´j´3 ´ δk2“j`3q

˛

‚. (60)

For V ipkq to be non-zero, we need that ki “ 0 and kl P t0, j ` i,´j ´ iu when l ‰ i.
Then V̂ 1p´kq ^

´

i k
|k|2

^

´

V̂ 2pkq ^ B
¯¯

“ 0 as soon as k1 ‰ 0 or k2 ‰ 0. If both are
null, then V̂ 1pkq “ 0 but if k3 P t0, j`1,´j´1u, and V̂ 2pkq “ 0 but if k3 P t0, j`2,´j´2u.
Thus the product is always zero.

Only remains now non-crossed terms:

V̂ 1p´kq ^

ˆ

i k

|k|2
^

´

V̂ 1pkq ^ B
¯

˙

“ V̂ 1p´kq ^ V̂ 1pkq.

ˆ

i k

|k|2
¨ B

˙

. (61)

For it to be non-zero, we need that k1 “ 0. If furthermore k2 ‰ 0 and k3 ‰ 0, then
V̂ 1pkq “ 0.

If k3 “ 0 and k2 ‰ 0 If k3 ‰ 0 and k2 “ 0

V̂ 1pkq “

¨

˝

1
2
pδk2“j`1 ` δk2“´j´1q

0
i
2
pδk2“´j´1 ´ δk2“j`1q

˛

‚ V̂ 1pkq “

¨

˝

i
2
pδk3“´j´1 ´ δk3“j`1q

1
2
pδk3“j`1 ` δk3“´j´1q

0

˛

‚

Thus for k2 “ j ` 1, Thus for k3 “ j ` 1,

V̂ 1p´kq ^ V̂ 1pkq “ 1
2

¨

˝

0
i
0

˛

‚ V̂ 1p´kq ^ V̂ 1pkq “ 1
2

¨

˝

0
0
i

˛

‚

and thus
ÿ

k‰0

V̂ 1p´kq ^ V̂ 1pkq

ˆ

i k

|k|2
¨ B

˙

“
ÿ

k3“k1“0

V̂ 1p´kq ^ V̂ 1pkq

ˆ

i k

|k|2
¨ B

˙

`
ÿ

k2“k1“0

V̂ 1p´kq ^ V̂ 1pkq

ˆ

i k

|k|2
¨ B

˙

“
1

2

¨

˝

0
i
0

˛

‚.

¨

˝

i
|j ` 1|2

¨

˝

0
j ` 1
0

˛

‚¨ B

˛

‚`
1

2

¨

˝

0
´i
0

˛

‚.

¨

˝

i
|j ` 1|2

¨

˝

0
´j ´ 1

0

˛

‚¨ B

˛

‚

`
1

2

¨

˝

0
0
i

˛

‚.

¨

˝

i
|j ` 1|2

¨

˝

0
0

j ` 1

˛

‚¨ B

˛

‚`
1

2

¨

˝

0
0

´i

˛

‚.

¨

˝

i
|j ` 1|2

¨

˝

0
0

´j ´ 1

˛

‚¨ B

˛

‚

“ ´
1

j ` 1

¨

˝

0
By

Bz

˛

‚.

(62)
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We do the same for the other ones:

ÿ

k‰0

V̂ 2p´kq^V̂ 2pkq

ˆ

i k

|k|2
¨ B

˙

“
´1

j ` 2

¨

˝

Bx

0
Bz

˛

‚,
ÿ

k‰0

V̂ 3p´kq^V̂ 3pkq

ˆ

i k

|k|2
¨ B

˙

“
´1

j ` 3

¨

˝

Bx

By

0

˛

‚.

(63)
Finally, for all i P J1, 3K, since the spectrum of U j and V i are disjoint:

ÿ

k‰0

Û jp´kq ^ V̂ ipkq

ˆ

i k

|k|2
¨ B

˙

“ 0, (64)

and then

αp2qpŨq “ αp2qpU jq ´
δ1

j ` 1

¨

˝

0 0 0
0 1 0
0 0 1

˛

‚´
δ2

j ` 2

¨

˝

1 0 0
0 0 0
0 0 1

˛

‚´
δ3

j ` 3

¨

˝

1 0 0
0 1 0
0 0 0

˛

‚, (65)

where the δi can be chosen as small as we want. Thus αp2qpUq is as near as we want from
a matrix of distinct non-zero eigenvalues, and it’s the same for αSpUq for Rm ă R0

m (NB:
the set in which Rm can be taken will vary continuously with U , thus the precaution we
took at the beginning of the subsection to be sufficiently far from the limit)

2.5.3 End of the proof

In the sequel of this subsection, we now work with Ũ instead of U , droping the tilda.
Thus, αS has distinct non-zero eigenvalues. In Fourier transform, we now have to find the
eigenvalues of the matrix AξαA ` AξαS, where

Aξ “ i

¨

˝

0 ´ξ3 ξ2
ξ3 0 ´ξ1

´ξ2 ξ1 0

˛

‚. (66)

Let there be P P O3pRq such that

tPαSP “

¨

˝

α1 0 0
0 α2 0
0 0 α3

˛

‚“ D, (67)

and write ζ “ tPξ. The matrix AζD has λ0 “ 0 eigenvalue, and two opposite eigenvalues
given by

λ˘ “ ˘

b

ζ21α2α3 ` ζ22α3α1 ` ζ23α1α2. (68)

Those eigenvalues are real for any ζ if all eigenvalues of αS have the same sign. Otherwise,
there exists a cone with vertex 0 outside of which they are. Furthermore, for ζ in the
complement Ω of this cone, λ` stays positive, and λ´ stays negative. Thus, the eigenvectors
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of AζD depend regularly of ζ. From now on, we fix some ζ in this good set Ω. We can
also assume that ξ “ Pζ P p2πQ˚

`q3.
Let β be an eigenvector associated to λ`. Then AζDβ “ iζ ^pDβq “ λ`β, so ζ ¨β “ 0.

Thus, we have Aζ tPαAPβ “ ζ ^ pγ ^ βq “ ´ipζ ¨ γqβ, where γ is a vector such that
@b P R3, tPαAPb “ γ ^ b. Thus β is also an eigenvector of Aζ tPαAP , associated with the
eigenvalue ´ipζ ¨ γq.

Now changing back to ξ “ Pζ, we have that

Aζ “ tPAξP, (69)

so that β is an eigenvector of tPAξαAP`tPAξPD associated to the eigenvalue λ`´ipζ ¨γq “

λ` ´ ipξ ¨Pγq. And thus Pβ is an eigenvector of AξαA `AξαS associated to an eigenvalue
of positive real part, that is a growing mode solution of the first term of (38).

2.6 Conclusion to the linear case
We have proven now the existence of an eigenvector b00 of the equation

P 0A1P 0Bε ` εA1εBε “ λεBε (70)

for ε “ 0 with positive real part, that is an exponentially-growing mode of the form

Bεpx, θ, tq “ b00pθ, ζqepλ`´iζ¨γqt`iζ¨x (71)

of the induction equation for given velocity field Us and small enough Rm (and ε “ 0).
Since the operator 1

ε
P εAεP ε varies analytically on ε for small ε, and has distinct eigenvalues

for ε “ 0, so do eigenvalues and eigenvectors of this operator, and thus the result remains
valid when ε is positive sufficiently small (at fixed ξ), and we have now an eigenvector b0
of the induction equation for small enough ε.

This concludes the proof of theorem 2.

Remark 1 Most of what we said stays valid if we take Rm out of a discrete set of values
instead of only “small enough”. Only the fact that αpUq is as near as we want to a matrix
of distinct non-zero eigenvalues remains a problem in that case.

Using the linear instability result in theorem 2, we will prove in the next section the
instability of the full nonlinear MHD system (4).

3 Nonlinear instability
We will now prove nonlinear instability of the system (4). For that we will adapt a method
developped by S. Friedlander, W. Strauss and M. Vishik in [5] (itself adapted from Y. Guo
and W. Strauss in [12]) to prove nonlinear instability given linear instability. The condition
s ą 3{2 ` 1 in the main theorem is used only in this section to obtain an inequality on
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the nonlinear terms similar to that in the article[5]. Actually, using the parabolic feature
of the MHD system, it would be possible to lower our regularity requirements (see for
instance S.Friedlander, N.Pavlović and R.Shvydkoy[4] in the context of the Navier-Stokes
equations). We stick here to regular data for simplicity of exposure.

Let Us P P belonging to the dense subset of linearly unstable flows described in the
previous section.

We introduce Leray operator P to get rid of p. We rewrite system (6) as

BtU ` LsU “ QpU ,U q, (72)

where
U “

ˆ

u
b

˙

, (73)

LsU “

ˆ

Ppu ¨ ∇Us ` Us ¨ ∇uq ´ 1
Re
∆u

´∇ ^ pUs ^ bq ´ 1
Rm

∆b

˙

(74)

is the linearized operator around
ˆ

Us

0

˙

, and

QpU ,U q “

ˆ

Ppp∇ ^ bq ^ b ´ u ¨ ∇uq

∇ ^ pu ^ bq

˙

(75)

is the nonlinearity.
We shall consider this system in Hs

T , T to be specified later. We also denote L2
T the

L2 space on the torus. Since we will work in these spaces until the end of the proof, we
will drop the T in the notation. We have the following a priori estimates for the nonlinear
term:

Every term of every component of QpU ,U q can be written as a product of one com-
ponent of U and one of ∇U (composed by P). Thus, we have the first estimate

}QpU ,U q}L2 ď C}U ¨ ∇U }L2 ď C}U }L2}∇U }L8 . (76)

For r “ 1
2
ps ` n{2 ` 1q ą n{2 ` 1 (here n “ 3) and η such that r “ p1 ´ ηqs (i.e.

η “ 1
2

´ n`2
4s

“ 1
2

´ 5
4s

), we have that

}∇U }L8 ď }U }Hr ď C}U }
η
L2}U }

1´η
Hs . (77)

Thus, we have:
}QpU ,U q}L2 ď C}U }

1`η
L2 }U }

1´η
Hs (78)

We shall prove the following theorem, which is a mere reformulation of the first theorem:

Theorem 3 Suppose s ą 3{2 ` 1, Rm small enough and Re ą 0. Then there exists a
vector T “ pT1, T2, T3q with integer coordinates such that the system (72) is nonlinearly
unstable in Hs

T in the following sense:
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There exists a growing mode U0 “

ˆ

u0

b0

˙

with }U0}Hs
T

“ 1 of the linearized system and a

constant C0 ą 0 depending only on U0, s, n, ρ such that for all δ ą 0, the perturbation of the
linear solution δU0 satisfies }U ptδq}Hs

T
ě C0 for some time tδ. Furthermore, tδ „δÑ0 ´ ln δ

ρ
.

Remark 2 This theorem only proves that the solution reaches high values in finite time
however small the initial condition is. In particular it doesn’t say wether it explodes in
finite time or is defined for all time, since both situations are possible in the result of the
theorem. Actually, for small enough initial data (that is small enough δ), it is classical
that the solution of the system doesn’t explode in finite time and thus the approximation of
tδ for vanishing δ is valid. More details in [22] (Theorem 3.8)

Assume in contrary that the system is nonlinearly stable while spectrally unstable, that

is that for any growing mode of initial value U0 “

ˆ

u0

b0

˙

with }U0}Hs
T

“ 1 in any box T of

the system (i.e. an eigenvector of Ls associated to an eigenvalue with positive real part)
and for any ε ą 0, there exists a δ ą 0 such that for all t ą 0, the solution U ptq of the
system with initial values δU0 satisfies }U ptq}Hs

T
ď ε.

3.1 Proof of the nonlinear instability
Let bLpθq “ eiεξ¨θbεpθq be the unstable eigenmode given by Theorem 2. We fix ε ă ε0 in
such a way that

T “

ˆ

2π

ε|ξ1|
,
2π

ε|ξ2|
,
2π

ε|ξ3|

˙

(79)

belongs to N3. This is possible as ξ P p2πQ˚
`q3 (take ε to be the inverse of a large integer).

In particular, ŨL “

ˆ

0
bL

˙

is an eigenvector of Ls associated to an eigenvalue with positive

real part in Hs
T .

Denote by ρ the maximum real part of the spectrum of Ls:

ρ “ max tReλ, λ P SpectrpLsqu . (80)

By the previous remark on ŨL, we know that ρ ą 0. Moreover, since the spectrum of

Ls is only made of eigenvalues, there exists an eigenvector UL “

ˆ

uL

bL

˙

with eigenvalue λ

satisfying exactly Reλ “ ρ.
Moreover, by standard properties of the spectral radius of eLs , we know that

eρ “ lim
tÑ`8

}etLs}1{t. (81)

Thus, for all η ą 0, there exists a Cη such that for all t ě 0,

}etLs} ď Cηe
ρp1`

η
2

qt (82)
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Then, the solution U of (72) with initial data δU0 can be written

U “ Û ` δUL, (83)

where Û satisfies
"

BtÛ “ LsÛ ` QpU ,U q

Û|t“0 “ 0
(84)

Using Duhamel’s formula, we can write the solution under the form:

Û ptq “

ż t

0

ept´sqLsQpU ,U q ds. (85)

Define
Tδ “ sup

"

t ą 0, @s ď t, }Û psq}L2 ď
1

2
δeρs}UL}L2

*

, (86)

where λ is the coefficient in the growing linear mode. Then, since we supposed that
U “ Ul ` Û remains bounded, and }Ul} „ δeρt}UL}, we have that Tδ ă 8.

And for all t ă Tδ,
}U ptq}L2 ď

3

2
δeρt}UL}L2 . (87)

Using a priori estimates stated earlier, we have for η “ 1
2

´ n`2
4s

“ 1
2

´ 5
4s

:

}Û ptq}L2 ď Cη

ż t

0

eρp1`
η
2

qpt´sq}U }
1`η
L2 }U }

1´η
Hs ds. (88)

}Û ptq}L2 ď δ1`ηCη

ż t

0

ept´sqp1`
η
2

qρep1`ηqρsε1´η ds

ď Cηδ
1`ηetp1`

η
2

qρε1´η 2

ηρ
pet

η
2
ρ ´ 1q

ď C 1δ1`ηetp1`ηqρε1´η

(89)

Thus, getting back to U :

}U }L2 ě δ}UL}L2eρt ´ C 1δ1`ηε1´ηetp1`ηqρ. (90)

By definition of Tδ, we have:

}Û pTδq}L2 “
1

2
δeρTδ}UL}L2 ď C 1δ1`ηε1´ηeTδp1`ηqρ, (91)

that is
1

2
}UL}L2 ď C 1δηε1´ηeTδηρ, (92)

Tδ ě ln

ˆ

}UL}L2

2C 1δηε1´η

˙

1

ηρ
. (93)
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Denote by tδ the quantity

tδ “ ln

ˆ

}UL}L2

2C 1δηε1´ηp1 ` ηq

˙

1

ηρ
. (94)

Thus tδ ď Tδ, and at this time tδ

}U }L2 ě δeρtδ
ˆ

}UL}L2 ´
}UL}L2

1 ` η

˙

“
η

1 ` η
}UL}L2

ˆ

}UL}L2

C 1ε1´ηp1 ` ηq

˙1{η

. (95)

Thus }U }L2 (and }U }Hs) can be bounded below by a value independent of δ, which
contradicts the asumption, and proves the theorem.

3.2 Estimation of the growing time
We will now estimate the time in which }U }Hs becomes of order 1. Denote by T0 this
time:

T0 “ suptt ą 0, @s ď t, }U psq}Hs ď 1u. (96)
We use again the definition of Tδ:

Tδ “ suptt ą 0, @s ď t, }Û psq}L2 ď
1

2
δeρs}UL}L2u. (97)

This time, Tδ might be infinite. For big enough λ as in the former proof, we have again
that

Tδ ě ln

ˆ

}UL}L2

2C 1δη

˙

1

ηρ
(98)

Denote again by tδ the right-hand side:

tδ “ ln

ˆ

}UL}L2

2C 1δηp1 ` ηq

˙

1

ηρ
. (99)

Thus in time t0 “ infttδ, T0u and with the constant

C0 “ inf

#

1,
η

1 ` η
}UL}L2

ˆ

}UL}L2

C 1p1 ` ηq

˙1{η
+

, (100)

we have
}U pt0q}L2 ě C0, (101)

and
t0 ď ln

ˆ

}UL}L2

2C 1p1 ` ηq

˙

1

ηρ
´

ln δ

ρ
ď

´ ln δ

ρ
` C 1

0. (102)
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